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Abstract: Protein Post Translation Modification identification is one of the important steps in conducting disease-associated 
mutation studies. Though multiple chemical alterations happen in a protein after translation, the addition of succinyl group to 
lysine residue plays a vital role in regulating cellular metabolism and thus disease. Use of a classification algorithm on some 
features, driven either from protein structural, physicochemical or even biochemical information becomes a common approach 
that can yield a satisfactory result up to a certain level. Although, researchers already developed many computational methods to 
identify whether a lysine residue modified with succinyl group after translation, most of them focused on the improvement either 
on a single decision using a single method or feature enrichment or even development of a benchmark dataset. Therefore, there 
still exists scope for further improvement to characterise lysine residues of a protein sequence by considering multiple predictors 
at a time. In this study, an ensemble based approach called DV-iSucLys has been designed to characterise the lysine residue by 
adapting three well known and conceptually different classifiers and ensembling their decisions. Also, a benchmark 
succinylation dataset was extracted from existing benchmark datasets and recently updated succinylation data from UniProt 
consortium to investigate the performance of the proposed approach as well as contribute to further research. Analysing rigorous 
cross-validation results show that DV-iSucLys can characterise succinyl lysine residue better than the existing predictors. 
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1. Introduction 

A small number of genes (20,000  ̶25,000) operate human 
life by encoding multiple proteins from single gene. Among 
different mechanism of genetic code expedition, protein 
post-translational modification (PTM) is one of the most 
significant biological processes which extends the functional 
diversity of the proteome by the covalent addition of 
functional groups or proteins, proteolytic cleavage of 
regulatory subunits or degradation of entire proteins. More 
than 300 different types of PTMs are distinguished [1] in 
vivo. Among evolutionary conserved PTMs, Lysine 
succinylation is one of them which was first discovered to 
occur at the active site of homoserine trans-succinylase [2] 
and available in both eukaryotes and prokaryotes. The 

importance of lysine succinylation is immense in terms of 
changes in protein structure as well as function, regulation of 
the physicochemical property of protein, protein 
conformation space and protein stability. Nonetheless, the 
details about the full regulatory role of succinylation are still 
an elusive issue. Identification of succinylation sites is 
considered as the most challenging and crucial topics for the 
researchers, not only for addressing the mechanism and 
function of protein succinylation which is very useful for 
both biomedical research and drug development but also for 
the availability of enormous amount of protein sequence data 
by blessings of genome projects. 

The traditional wet-lab experimental methods for 
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succinylation site prediction are expensive, laborious and 
face uncertain time boundary to meet the research demands, 
especially for large-scale datasets. Additionally, 
post-genomic era generates a huge amount of protein 
sequences which are helpful for computational techniques. 
As a result, the automated computational system is highly 
desirable to predict succinylation sites. Currently, some 
computational methods based on machine learning 
approaches are available to predict protein succinylation sites, 
and much progress has already been achieved in this 
direction. 

Zhao et al. [3] developed SucPred, a support vector 
machine (SVM) based succinylation site predictor which 
used protein sequence based multiple feature encoding 
schemes (autocorrelation functions, grouped weight based 
encoding, positional weight amino acids composition and 
normalised van der Waals volume). Another SVM based 
predictor SuccFind [4] was developed using both sequences 
driven feature (k-space amino acid pairs) and 
evolution-derived information of sequence (amino acid index 
(AAindex) properties)). iSuc-PseAAC predictor [5] 
incorporated the peptide position specific propensity into the 
general form of PseAAC (Pseudo Amino Acid Composition) 
for training support vector machine. iSuc-PseOpt [6] 
integrated the sequence-coupling effects into the general 
pseudo amino acid composition, solved class imbalance 
problem and applied random forest algorithm for prediction. 
SuccinSite [7] used a random forest classifier, incorporating 
three sequence encoding features such as the composition of 
k-spaced amino acid pairs, binary encoding and amino acid 
index. pSuc-Lys [8] has incorporated the sequence-coupled 
information into the general pseudo amino acid composition 
and used ensemble random forest as a classifier. In ILSES [9] 
several physicochemical properties of succinylated sites have 
been extracted, namely the physicochemical property of the 
amino acids and a flexible neural tree has been employed as 
the classification model. SucStruct [16] use k-nearest 
neighbours cleaning method for imbalanced data and pruned 
decision tree for classification of succinylated sites based on 
structural features of amino acids. However, these predictors 
have shown poor sensitivity in detecting succinylated lysine 
residues. Therefore, additional efforts are still needed for 
improving the prediction. 

From the above exploration, it is evident that different 
researchers use different algorithms as well as distinct 
features. This study hypothesis that combining multiple 
decisions on a single issue will lower the chance of error. 
Considering this hypothesis, an ensemble based lysine 
residue classifier has been designed and tested. 

Based on this hypothesis, major contributions of this work 
are- 

Firstly, this study contemplates five commonly used 
feature extraction techniques for lysine residue 
characterisation related to sequence based, physicochemical 
and biochemical properties based information of proteins. 

Secondly, a classifier named DV-iSucLys has been 
developed and compared the performance with three baseline 

classifiers such as K-nearest neighbour (KNN), Support 
Vector Machine (SVM) and Random Forest (RF) for 
succinylation site prediction regarding accuracy, sensitivity, 
specificity and MCC metrics. 

Thirdly, a focus was given to the development of an 
updated benchmark succinylation protein dataset for further 
research. 

2. Materials and Methods 

2.1. Datasets 

To construct a robust benchmark dataset, experimentally 
validated protein sequences with lysine succinylation site 
details were collected from SwissProt/UniProt (retrieved on 
21 May 2017) [17] and Compendium of Protein Lysine 
Modifications database curated by CUCKOO Workgroup [18]. 
Initially, 897 proteins with 2523 verified succinylation site (i.e. 
positive site) from different species were extracted. All the 
non-succinylation sites (i.e. negative site in total 24669) were 
also extracted from the same protein sequences to maintain 
consistency. For formulating any post-translational 
modification site (PTM), a de-facto standard used by the 
researchers [19-22] is to extract the PTM site centred (in this 

experiment, lysine centred) peptide segments of an optimal 
size. These peptide segments can be expressed as- 

Peptide��	
��� = R��R������…	R��R��KR��R��…	R������R��	 (1) 

where, centred K represents the amino acid residue “lysine” 
and n represents the maximum length of each side of a 
considered PTM site, so as each peptide segments will be of 
size (2n + 1). Lower sized peptide segments were padded with 
non-existing amino acid residue ‘O’ to keep the consistency of 
window size of PTM sites. 

A peptide segment, represented in the form (equation 1) is 
considered positive sample if it is centred “K” is 
experimentally verified as Succinylation site (suc site); 
otherwise it is considered as a negative sample. i.e. 

Peptide��	
��� 	∈ 	 �P
��� , if	Centered	K residue	is	verified	as	suc	site	P
��� , Otherwise																																																														 
where P
��	�  and P
��	�  represents positive and negative set of 
data respectively. 

As the benchmark dataset contains both succinylation 
positive site and negative site, which was used for training and 
testing (subset by subset) the considered computational 
techniques, thus the benchmark dataset can be represented as- 

S = S� 	∪ S� 

where S� 	 ∈ P
��� 	, 	S� 	 ∈ P
���   

To develop a robust benchmark dataset, multiple 
experiments was carried out with different values of n (in 
equation 1) for selecting optimal peptide segment size i.e. 
(2n+1). By doing this, a set of benchmark datasets have been 
obtained. 



 American Journal of Biomedical and Life Sciences 2017; 5(6): 135-143 137 
 

 

 

Figure 1. Rate of Homology (No of homologous site in each homology group). 

In PTM Site prediction, the presence of homology and 
redundancy in the peptide segments may bias or overestimate 
the performance of the predictors, which is also mentioned by 
different PTM site researchers [19-23]. This study investigates 
this issue by considering less than 40% pairwise sequence 
identity in different initial benchmark datasets (for different 
segment size) using clustering. These investigations had 
indicated that data set with n=5, hence segment size = 2n+1 = 
2*5+1=11 would be most promising. In Figure 1, for segment 
size 11, the rate of homologous site is presented in the form of 
a graph. It shows that, there was a significant number of 
homologous sites in the initial dataset and wipe of these sites 
were required for unbiased evaluation. For each group, the 
most representative segments was kept by prioritising the 
verified succinylation sites, as the number of non-verified and 
non-succinylation sites were initially so high. Finally, a 
non-homologous and non-redundant dataset was formed 
having 796 positive sites with corresponding negative sites in 
2:1 ratio (random selection). 

2.2. Features 

Alphabetic Sequence of Amino Acids is a well-known 
representation of protein samples and peptides which can be 
directly derived from raw protein sequence. To use effectively 
in computational tools to predict the succinylation site, 
peptides should be converted into an effective mathematical 
expression. In most cases, it is called feature vector which can 
be represented as in equation (2), also suggested by Y. Xu et al. 
in a similar form in [5]. 

Peptide, P = (C1, C2, …, Cd)
T           (2) 

where, T = transpose operator and 

d = vector’s dimension (integer value). 
The value of d as well as the components Cd depends on the 

technique of extracting the desired information from the 
protein or peptide sequences. 

In our considered case, peptide P can be represented as- 

P = (R1, R 2, …, R 6, …, R 11)
T             (3) 

here, R6 = K and 
Ri (i = 1, 2, …, 11; i ≠ 6) = any of the 21 considered amino 

acid residue (any of 20 standard residue or non-existing amino 
acid residue ‘O’). 

2.2.1. Amino Acid Composition (AAC) 

Amino Acid Composition is a simple and commonly used 
method of feature extraction technique, based on calculating 
the proportion of each amino acid in peptide sequence. 
Mathematically, this technique can be expressed as- 

,- 	= �.������/ ; 	i	ϵ	21, ……… . , 207	       (4) 

where, count(i) computes the number of occurrences of ith 
amino acid within N length protein sequence. 
This representation also disccused by L. Nanni, A. Lumini, 
and S. Brahnam [10]. 

2.2.2. CKSAAP 

CKSAAP was developed by Chen et al. [11], and now it is 
widely used in many bioinformatics research. In our study, a 
protein sequence is fragmented by window size = 2n+1. The 
number of amino acid residues is 21; 20 basic amino acids and 
including gap represented by “O”. Thus, total amino acid pairs 
are (21*21) =441 like as AA, AC, AD,..., OO for every single 
k (integer) where k denotes the space between two amino 
acids. For example, “AA” means k-space=0, “AXA” means 



138 Md. Khaled Ben Islam et al.:  DV-iSucLys: Decision Voting to Improve Protein Lysine Succinylation Site   
Identification from Sequence Data 

k-space=1, “AXXA” means k-space=2. In this work, kmax = 5 
and it produced 21*(kmax+1)*21 = 2646 different amino acid 
pairs which were used in feature vector for each segment 
sequence. The feature vector was calculated using the 
following equation which was also used in the design of 
SuccinSite tool [7]: 

8 /99/:;<=> , /9?/:;<=> , … , /@@/:;<=>ABB�	           (5) 

where, 
NTotal = length of the total composition residues 
NAA, NAC,…, NOO = frequency of amino acid pair within 

fragment 
If the selected window size of sequence is n and k = 0, 1, 2, 

3, 4, 5 then NTotal = n - k - 1. 

2.2.3. Binary Encoding 

Binary amino acid encoding which featured in [7], 
calculates the positional information from the corresponding 
amino acids sequence fragments. In this study, all the 20 
standard amino acid residues were considered and 
non-existing “O” residue was used for gap or padding purpose. 
In total, 21 amino acid residues are ordered as 
ACDEFGHIKLMNPQRSTVWYO. These amino acids were 
transformed into numeric values for adopting a binary vector. 
For example, A was represented as 
1000000000000000000000, C as 01000000000000000000 
and so on. 

Since the window size of the peptides to be encoded is 
always "K" centred, so encoding all the peptides using same 
binary coded values in the same position would not carry any 
significant PTM information. For this reason, centred "K" was 
not considered into account at the time of encoding. As a result, 
final feature vectors dimension of binary encoding is ((n - 1) * 
21). 

2.2.4. Amino Acid Index (AAindex) 

Amino Acid Index representing different physicochemical 
and biological properties of amino acids are used as the 
informative feature in different predictors (e.g. SuccinSite [7] 
and SuccFind [4]). In this experiment, both Physicochemical 
and biochemical properties of amino acids were extracted 
from AAindex database, version 9.1 [12]. In this study, all the 
544 biochemical and biological indices from AAindex 
database are taken into account. Overrepresentation of zeroes 
and incomplete data in those indices were pre-processed using 
zero-based replacement strategy. As a result, all the 544 
physicochemical properties were considered as potential 
features for representing the PTM sites. Thus, the dimension 
of feature vector becomes (n * 544), where n is the window 
size. 

2.2.5. Position Specific Amino Acid Propensity (PSAAP) 

Position Specific Amino Acid Propensity (PSAAP) is a 
feature of incorporating Peptide Position Specific Propensity 
into the general form of PseAAC. This information 
presentation technique is formulated as the following matrix, 
presented in [5] as: 

Z = C D�,� ⋯ D�,F⋮ ⋱ ⋮D��,� ⋯ D��,FI��×F	            (6) 

where, 

zi,j = F+(Ri│j) – F−(Ri│j)          (7) 

i = 1, 2, …, 21 and j = 1, 2, …, n 

F+(Ri│j) is the occurrence frequency of the ith amino acid (i 
= 1, 2, …, 21) in the jth column in the positive benchmark 
dataset S+, while F−(Ri│j) is the corresponding occurrence 
frequency and derived from the negative benchmark dataset 
S−. The centred amino acid K was excluded as it was the same 
in positive and negative peptides (samples) respectively. Thus, 
the components in Equation (1) can be uniquely defined by: 

K	 ∈
LM
N
MO
D�,P	QℎST	U- = VD�,P	QℎST	U- = W...D��,P	QℎST	U- = ,

               (8) 

where, u indicate a particular component. 
To encode a potential site (i.e. a fragment of 11 amino acids), 

one 11-dimensional feature vector (X) was constructed by 
looking up the corresponding parameters from the above 
matrix, presented in Equation (6), which was further explained 
in the following example which was earlier used in [13]. 

If a succinylated “K” residue was presented by the 
following 27 residues long fragment instead of 11 length like 
Equation (9) - 

G	E	S. . . V[\\]\\̂ 	_	 P. . . P	P	D[\\]\\̂ 	               (9) 

Then, the corresponding feature vector (X) would derived 
as- 

, = �a�, a�, … , a�b� =
	Db,�, DB,�, . . . , D�c,��	[\\\\\]\\\\\^	×�d	efgFhijklm 	 D�d,�d, … , D�d,��, Dd,�b	[\\\\\]\\\\\^	�dnohijklm 	  (10) 

In the above Equation (9), x1 would encoded by glycine (G) 
in the first position of 13 downstream residues. Since G is 
alphabetically ranked at the sixth position among the 20 amino 
acids, the corresponding value of x1 would z6,1. Analogous to 
x1, the values of x2, x3,…, x26 also could be obtained as 
described in Equation (10). Since the matrix Z reflects the 
position-specific amino acid propensity surrounding the 
phosphorylation sites, this encoding system is known as 
PSAAP feature. 

2.3. Classifier 

Choosing and designing effective classifier is a crucial step 
in succinylation sites prediction. For prediction of 
succinylation sites, a variety of machine learning algorithms 
have already used, namely Support Vector Machine (SVM), 
Random Forest (RF), Ensemble Random Forest and so on. 
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This study has considered three different types of algorithms 
as base algorithm among them – KNN, SVM and RF. 

2.3.1. k-Nearest Neighbor (KNN) 

Among the non-parametric machine learning methods used 
for classification and regression, K-Nearest Neighbour (KNN) 
is a technically simplest one. In both cases, the input consists 
of the K closest training examples in the feature space. Here, 
KNN has been used as a classifier. The output is a class 
membership. In its simplest form, classification is performed 
based on majority voting. A particular target instance is 
classified by a majority vote of its neighbours. The target 
instance is assigned to the class most common among its k 
nearest neighbours. If k = 1, then the instance is simply 
assigned to the class of that single nearest neighbour. If k >= 3, 
then the instance is assigned to the class of major nearest 
neighbours. The value of k is normally odd. KNN is a type of 
instance-based learning, or lazy learning, where the function is 
only approximated locally, and all computation is deferred 
until classification. The closest peptides of the target peptide, 
pt is defined as- 

pphki�qi� 	= rs-: u�s-, qi� ≤ u�w�x        (11) 

y = 1,2, … , p 

where, 

u�s-, qi� 	= ||s- − qi|| 
i.e. d�q�, p��	is the distance between q� and p� in Euclidean 
space and d(k) is the kth order statistic of }d�q�, p��~�. 

2.3.2. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is one of the most popular 
supervised learning algorithms that are used for classification, 
regression and outlier’s detection. In this experiment, SVM is 
used for classification. In general, Support Vector Machine is 
a method of obtaining the optimal boundary of two sets in a 
vector space independently on the probabilistic distributions 
of training vectors in the sets. Its fundamental idea is to locate 
the boundary that is most distant from the vectors nearest to 
the boundary in both of the sets. It is useful for the linear 
boundary. In case of nonlinear boundary, kernel trick is 
introduced where a deformation of the vector space itself to a 
higher dimensional space is occurred. As kernel function 
crucially influence the classification of SVM, Redial Basis 
Function (RBF) was used as a kernel in this study. For each 
target peptide Pt, the decision about succinylation sites will be 
made by SVM as: 

���ai� = 	∑ �-�-_�a-, ai� + �F-�� 	           (12) 

where, _�a- , ai� = Saq�−γ	||a- − ai||�� 
�- ∈ �+1,−1�, 

γ = 	 12�� 

σ is the width of the function, 

αi is the Lagrange multipliers. 
The prediction rule for query peptide P can be formulated 

as- 

K ∈ �succinylated	peptide, y�	�- =	+1						nonsuccinylated	peptide, ��ℎS��y�S	       (13) 

2.3.3. Random Forest (RF) 

As a widely used supervised learning algorithm in 
bioinformatics, Random forest is an ensemble of decision 
trees which act as both classification and regression tree. 
These decision trees are constructed and trained by different 
bootstrap samples of original data. When a new object comes 
for classification, each tree of the forest gives their opinion 
about its class and output is formed based on the majority 
voting of class. It is relatively robust to noise and outliers. This 
technique also used in other domains like Intrusion detection 
[14]. Like M. A. M. Hasan et al. [14], its considered workflow 
can be described as- 

1) From the Training of n samples draw ntree bootstrap 
samples. 

2) For each of the bootstrap samples, grow classification 
tree with the following modification: 

At each node, rather than choosing the best split among all 
predictors, randomly sample mtry of the predictors and choose 
the best split among those variables. The tree is grown to the 
maximum size and not pruned back.  

3) Predict new data by aggregating the predictions of the 
ntree trees (i.e., majority votes for classification). 

3. Implementation 

3.1. Selection of K, Kernel Function and Parameters 

Parameter selection for the classifier is one of the 
important issues for getting the best performance of it. For 
SVM, RBF kernel function has been chosen to test the 
developed datasets. In RBF kernel, the best combination of γ 
and regularisation coefficient c is responsible for obtaining 
highest accuracy. In this work, it was observed that higher 
accuracy for the training dataset in KNN and SVM classifiers 
were obtained when k, γ and c were certain values. These 
parameters were selected from the sets for k = {1, 2, 3,..., 20}, 
γ = {2-8, 2-7, …, 20, 21,…, 28} and c = {2-2, 2-1, 20, 21, 22}. In 
case of random forest, three different parameters also tuned. 
The number of trees (ntree), number of descriptors randomly 
sampled as candidates for splitting at each node (mtry) and 
minimum node size were selected from ntree = {10, 20,…, 
100}, mtry = {1,..., ��S����S	uy�ST�y�T	} and node size = 
{1, 2, 3} respectively for better accuracy. 

3.2. Performance Metrics 

In this work, four well-defined metrics were used to 
measure the performance of succinylated site prediction. 
Sensitivity (Sen), Specificity (Spe), Accuracy (Acc) and 
Mathews correlation coefficient (MCC) were used to assess 
the competence of different approaches including the 
proposed approach on the benchmark dataset. These metrices 
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were considered in this study to consistently compare the 
performance of different PTM identification tools. 
Formulation of these metrices were also adapted from those 
state-of-the-art techniques specially from SucPred [3], 
Succfind [4], iSuc-PseOpt [6], SuccinSite [7] and SucStruct 
[16]. 

3.2.1. Sensitivity 

Sensitivity, also known as true positive rate, is measured by 
correctly identified succinylated lysine residues. This metric 
varies between 0 and 1, where 0 indicates the predictor is 
inaccurate, and 1 represents a totally accurate predictor. The 
higher sensitivity is proportional to the best prediction of 
succinylated lysines. Mathematically, it can be expressed as: 

Sensitivity = 	 ������/	           (14) 

where, TP denotes true positives or the number of correctly 
identified samples, and FN denotes false negatives or the 
number of incorrectly rejected samples. 

3.2.2. Specificity 

Specificity, also known as true negative rate, is measured by 
correctly identified negative samples or non-succinylated 
lysine residues. This metric also varies between 0(totally 
incorrect) and 1(totally correct). Specificity metric can be 
formulated as: 

Sensitivity = 	 �/�/���	           (15) 

where, TN depicts true negatives or the number of correctly 
rejected samples from succinylated sample set, and FP depicts 
false positives or the number of incorrectly accepted samples 
as succinylated. 

3.2.3. Accuracy (Acc) 

Accuracy (Acc) is the ratio of total number of correctly 
classified samples (C) and the total number of samples (N). 
i.e. 

Acc = 	 �/	                (16) 

It varies between 0 (least accurate) and 1 (most 
accurate).For the best succinylation predictor, it will be 1. 

3.2.4. Mathews Correlation Coefficient (MCC) 

Mathews correlation coefficient (MCC) gauges the 
classification quality of the model. It varies between -1 and 1, 
where 1 denotes a full positive classification correlation and -1 
denotes a full negative classification correlation. MCC can be 
expressed as: 

MCC = ���∗	�/��	��/∗	�������	�	������	�	�/���/	�	�����/	�	�/�       (17) 

3.3. Cross-Validation 

Cross-validation becomes a de-facto standard and effective 
method to estimate the performance and effectiveness of a 
statistical prediction model. In the area of post-translational 

modification, there are three commonly used cross-validation 
techniques - independent dataset test, jackknife test and k-fold 
cross-validation test. Among these techniques, K-fold 
cross-validation is considered as technique to approximately 
estimate prediction error without bias under much more 
complicated situations, mentioned in [15], but with lower 
computational complexity compared to the other methods. 
Considering this fact as well as to maintain consistency with 
existing approaches in this area, in this study, 5-fold cross 
validation strategy has been considered to evaluate the 
performance of the proposed approach. 

4. Result and Discussion 

In this study, the main goal was to investigate as well as 
develop a predictor to improve the performance of 
succinylation post-translational modification using 
conceptually different well-known classifiers. For 
post-translational modification information source, this study 
relies on a sequence derived, physicochemical and 
biochemical based features which are commonly used in this 
area. For each information source, lysine residue was 
characterised using each classifier, i.e. KNN, SMV, Random 
Forest as well as the considered ensemble based DV-iSucLys. 
This study has found that, in most of the cases, DV-iSucLys 
over-perform each base classifier or almost align with them 
which are shown in Figure 2. This result indicates that none of 
the base algorithms can efficiently utilise all the available 
protein information independently for succinyl lysine 
characterisation. 

A deeper inspection of the experimental data presented in 
this article has showed that the proposed method DV-iSucLys 
has achieved highest overall accuracy 75.4% when PSAAP 
was used as the information source. This performance has 
aligned with basic Random Forest algorithm with a slight 
increase in specificity and MCC. In case of sensitivity, no 
remarkable improvement has been achieved, still satisfactory. 
This result might provide some clue that, position information 
of amino acid residue in sequence data can be utilised in a 
better way to identify actual non-succinylation site or 
non-verified site. 

However, for identifying the lysine residues which are 
actually modified by succinyl group and which are not, 
DV-iSucLys can use the physicochemical or biological 
information and exceeds the baseline classifiers. It happens 
not only in case of overall accuracy but also in case of some 
other performance metrics presented in Table 1, Table 2, Table 
3 and in table 4. 

In addition, it also shows from the experimental data that, 
raw frequency based information source of either amino acids 
or di-peptides was not benicial for ensemble of conceptually 
different strategy i.e. KNN (neighbor based lazy learning), 
SVM (kernel based model learning) and Random Forest 
(decision tree based learning). It reveals from the fact that 
performace of DV-iSucLys is not improved for frequency 
based information sources like CKSAAP, Binary Encoding 
than base classifiers. Though, in case of similar information 
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source i.e. direct frequecy of amino acids (AAC), a little bit of 
improvement has been marked in terms of overall accuracy for 
DV-iSucLys. A closer observation of the evaluation metrices 

data expose that, different base algorithms handles frequency 
data far differtly. This raised the convergence issue in decision 
voting and results in poor performance in ensembling. 

Table 1. Performance matrices of five features using SVM. 

Features Sensitivity Specificity Accuracy MCC 

PSAAP 0.758 0.709 0.741 0.449 
CKSAAP 0.927 0.402 0.752 0.402 
AAC 0.879 0.435 0.731 0.354 
Binary Encoding 0.857 0.490 0.735 0.373 
AAindex 0.822 0.530 0.724 0.363 

Table 2. Performance matrices of five features using KNN. 

Features Sensitivity Specificity Accuracy MCC 

PSAAP 0.925 0.349 0.733 0.346 
CKSAAP 0.994 0.008 0.665 0.007 
AAC 0.941 0.254 0.712 0.279 
Binary Encoding 0.981 0.050 0.671 0.088 
AAindex 0.911 0.239 0.687 0.204 

Table 3. Performance matrices of five features using RF. 

Features Sensitivity Specificity Accuracy MCC 

PSAAP 0.886 0.490 0.754 0.415 
CKSAAP 0.925 0.379 0.743 0.376 
AAC 0.868 0.480 0.739 0.380 
Binary Encoding 0.911 0.337 0.719 0.309 
AAindex 0.957 0.261 0.725 0.322 

Table 4. Performance matrices of five features for DV-iSucLys predictor. 

Features Sensitivity Specificity Accuracy MCC 

PSAAP 0.878 0.505 0.754 0.417 
CKSAAP 0.955 0.271 0.727 0.327 
AAC 0.916 0.382 0.741 0.363 
Binary Encoding 0.923 0.309 0.719 0.303 
AAindex 0.928 0.334 0.730 0.338 

 

Figure 2. Comparison of three classifiers for five features based on accuracy. 
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Table 5. A comparison with existing predictors. 

Method Sensitivity Specificity Accuracy MCC 

SucPred 0.272 0.673 0.643 -0.030 
SuccFind 0.252 0.792 0.750 0.029 
iSuc-PseOpt 0.615 0.778 0.699 0.399 
SuccinSite 0.3019 0.9017 0.6092 0.2556 
SucStruct (6-fold) 0.7334 0.7548 0.7444 0.4884 
Considered method, DV-iSucLys (for PSAAP feature) 0.878 0.505 0.754 0.417 

 
In addition to this, data in Table 5 shows that the sensitivity 

and accuracy of DV-iSucLys predictor based on PSAAP 
feature is higher than all previous predictors. From this 
observation, it can be a hint that combination of decision 
fusion based approach with direct residue position based 
information source can be considered as a useful alternative 
way of succinylation site identification. 

5. Conclusion 

In this study, a computationally simple lysine residue 
characterisation approach has been evaluated with the primary 
motivation to combine conceptually different classifiers using 
majority voting rule, with the target to balance out their 
individual weakness. This experiment attempts a thorough 
exposition of the topic, i.e. characterising succinyl lysine 
residue from different commonly used information sources 
like pure protein sequence based, physicochemical as well as 
biochemical properties of amino acids. 

This investigation shows that the proposed approach 
outperforms other approaches in this area in case of overall 
accuracy and sensitivity when compared with existing 
approaches. This result indicates that the chance of correctly 
identifying true succinylation site is higher than the others. In 
addition to the proposed approach, an updated benchmark 
succinylation modification dataset has been developed for 
different species by extracting PTM information existing 
dataset as well as from UniProt knowledgebase, which can be 
used for further research. 
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